APPENDIX C MODEL/EQUATIONS FOR ESTIMATING TIER 1 AND TIER 2A TARGET LEVELS WITHIN THE DCRBCA PROCESS

The symbols used in the equations are all defined with their units. Also, symbols are consistent with those used in Tables 5-4 and 5-5; the DCRBCA computational software and report forms.

INDOOR INHALATION OF VAPOR EMISSIONS

Carcinogenic effects

$$RBTL_{ai} = \frac{TR \times BW \times AT_c \times 365}{IR_{ai} \times ET_{in} \times ED \times EF \times SF_i}$$

Non-carcinogenic effects

$$RBTL_{ai} = \frac{THQ \times BW \times AT_{nc} \times 365 \times RfD_{i}}{IR_{ai} \times ET_{in} \times ED \times EF}$$

Source: RAGS, Vol. I, 1989, p. 6-44

where:

 $RBTL_{ai}$ = Risk-based target level in indoor air [mg/m³]

TR = Target risk or the increased chance of developing cancer over a lifetime due to

exposure to a chemical [-]

THQ = Target hazard quotient for individual constituents [-]

BW = Body weight [kg]

 AT_c = Averaging time for carcinogens[years]

 AT_{nc} = Averaging time for non-carcinogens[years]

 IR_{ai} = Indoor inhalation rate [m³/hr] ET_{in} = Indoor Exposure time [hr/day] ED = Exposure duration [years]

EF = Exposure frequency [days/year]

 RfD_i = The chemical-specific inhalation reference dose [mg/(kg-day)]

 SF_i = The chemical-specific inhalation cancer slope or potency factor $[mg/(kg-day)]^{-1}$

OUTDOOR INHALATION OF VAPOR EMISSIONS

Carcinogenic effects

$$RBTL_{ao} = \frac{TR \times BW \times AT_c \times 365}{IR_{ao} \times ET_{out} \times ED \times EF \times SF_i}$$

Non-carcinogenic effects

$$RBTL_{ao} = \frac{THQ \times BW \times AT_{nc} \times 365 \times RfD_{i}}{IR_{ao} \times ET_{out} \times ED \times EF}$$

Source: RAGS, Vol. I, 1989, p. 6-44

Where:

 $RBTL_{ao}$ = Risk-based target level in outdoor air [mg/m³]

TR = Target risk or the increased chance of developing cancer over a lifetime due to

exposure to a chemical [-]

THQ = Target hazard quotient for individual constituents [-]

BW = Body weight [kg]

 AT_c = Averaging time for carcinogens[years]

 AT_{nc} = Averaging time for non-carcinogens[years]

 IR_{ao} = Outdoor inhalation rate [m³/hr] ET_{out} = Outdoor Exposure time [hr/day]

ED = Exposure duration [years]
EF = Exposure frequency [days

EF = Exposure frequency [days/year]

RfD_i = The chemical-specific inhalation reference dose [mg/(kg-day)]

 SF_i = The chemical-specific inhalation cancer slope or potency factor [mg/(kg-day)]⁻¹

DIRECT INGESTION OF GROUNDWATER

(ONLY FOR CHEMICALS WITHOUT DC WATER QUALITY STANDARDS)

Carcinogenic effects

$$RBTL_{w} = \frac{TR \times BW \times AT_{c} \times 365}{IRW \times ED \times EF \times SF_{o}}$$

Non-carcinogenic effects

$$RBTL_{w} = \frac{THQ \times BW \times AT_{nc} \times 365 \times RfD_{o}}{IR_{W} \times ED \times EF}$$

Source: RAGS, Vol. I, 1989, p. 6-35

Where:

 $RBTL_w$ = Risk-based target level for ingestion of groundwater [mg/L-H₂O]

TR = Target risk or the increased chance of developing cancer over a lifetime due to

exposure to a chemical [-]

THQ = Target hazard quotient for individual constituents [-]

BW = Body weight [kg]

 AT_c = Averaging time for carcinogens[years] AT_{nc} = Averaging time for non-carcinogens[years]

IR_W = Water ingestion rate [L/day]
 ED = Exposure duration [years]
 EF = Exposure frequency [days/year]

 RfD_o = The chemical-specific oral reference dose [mg/(kg-day)]

 SF_o = The chemical-specific oral cancer slope or potency factor [mg/(kg-day)]⁻¹

SUBSURFACE SOIL CONCENTRATIONS PROTECTIVE OF INDOOR VAPOR INHALATION

$$RBTL_{si} = \frac{RBTL_{ai}}{VF_{sesp}}$$

where:

 $RBTL_{si}$ = Risk-based target level for indoor inhalation of vapors from subsurface

soils [mg/kg-soil]

 $RBTL_{ai}$ = Risk-based target level for indoor inhalation of air [mg/m³-air]

 VF_{sesp} = Volatilization factor from subsurface soil to indoor (enclosed space) air

[(mg/m³-air)/(mg/kg-soil)]

Source: ASTM E1739-95

GROUNDWATER CONCENTRATIONS PROTECTIVE OF INDOOR VAPOR INHALATION

$$RBTL_{wi} = \frac{RBTL_{ai}}{VF_{wesp}}$$

where:

 $RBTL_{wi}$ = Risk-based target level for indoor inhalation of vapors from groundwater

 $[mg/L-H_2O]$

 $RBTL_{ai}$ = Risk-based target level for indoor inhalation of air (mg/m³-air)

 VF_{wesp} = Volatilization factor from groundwater to indoor (enclosed space) air

 $[(mg/m^3-air)/(mg/L-H_2O)]$

INHALATION OF VAPORS AND PARTICULATES, DERMAL CONTACT AND INGESTION OF CHEMICALS IN SURFICIAL SOIL

Carcinogenic effects

$$TR \times BW \times AT_a \times 365$$

$$RBTL_{SS} = \frac{TR \times BW \times_{AT_c} \times 365}{EF \times ED \times \left[(SF_o \times 10^{-6} \times (IR_{soil} \times RAF_o + SA \times M \times RAF_d)) + (SF_i \times IR_{ao} \times ET_{out} \times (VF_{SS} + VF_p)) \right]}$$

Non-carcinogenic effects

$$RBTL_{SS} = \frac{THQ \times BW \times_{AT_{nc}} \times 365}{EF \times ED \times \left[\frac{10^{-6} \times (IR_{soil} \times RAF_o + SA \times M \times RAF_d)}{RfD_o} + \frac{(24 \times IR_{ao} \times (VF_{ss} + VF_p))}{RfD_i}\right]}$$

where.

 $RBTL_{ss}$ = Risk-based target level in surficial soil [mg/kg]

= Target risk or the increased chance of developing cancer over a lifetime due

to exposure to a chemical [-]

= Target hazard quotient for individual constituents [-] THQ

BW= Body weight [kg]

= Averaging time for carcinogens [years]

 AT_{nc} = Averaging time for non-carcinogens [years]

ED= Exposure duration [years]

= Exposure frequency [days/year]

 IR_{soil} = Soil ingestion rate [mg/day]

 RAF_{o} = Oral relative absorption factor [-]

= Skin surface area [cm²/day] SA

M= Soil to skin adherence factor [mg/cm²]

 RAF_d = Dermal relative absorption factor [-]

 IR_{ao} = Outdoor inhalation rate [m³/hr]

= Outdoor Exposure time [hr/day]

= Oral cancer slope factor [(mg/kg-day)⁻¹] SF_o

 SF_i = Inhalation cancer slope factor [(mg/kg-day)⁻¹]

= The chemical-specific oral reference dose [(mg/kg-day)] RfD_o

 RfD_i = The chemical-specific inhalation reference dose [(mg/kg-day)]

= Volatilization factor of particulates [(mg/m³-air)/(mg/kg-soil)]

= Volatilization factor from surficial soil [(mg/m³-air)/(mg/kg-soil)]

SUBSURFACE SOIL CONCENTRATIONS PROTECTIVE OF LEACHING TO GROUNDWATER

$$RBTL_{SL} = \frac{RBTL_{w}}{LF_{SW}}$$

where:

 $RBTL_{SL}$ = Risk-based target level for leaching to groundwater from subsurface soil

[mg/kg-soil]

 $RBTL_w$ = Risk-based target level for ingestion of groundwater [mg/L-H₂O]

 LF_{SW} = Leaching Factor (from subsurface soil to groundwater)

[(mg/L-H₂O)/(mg/kg-soil)]

DCRBCA Final Fiscal Year 2002

VOLATILIZATION FACTORS

 VF_{wesp} : Volatilization factor from groundwater to indoor (enclosed space) air [(mg/m³-air)/(mg/L-H₂O)]

 VF_{wamb} : Volatilization factor from groundwater to outdoor (ambient) air [(mg/m³-air)/(mg/L-H₂O)] - For Construction Worker Only

$$VF_{wesp} = \frac{H \times \left[\frac{D_{ws}^{eff} / L_{GW}}{ER \times L_{B}}\right]}{1 + \left[\frac{D_{ws}^{eff} / L_{GW}}{ER \times L_{B}}\right] + \left[\frac{D_{ws}^{eff} / L_{GW}}{\left(D_{crack}^{eff} / L_{crack}\right) \times h}\right] \times 10^{3}}$$

where:

= Chemical specific Henry's Law constant[(mg/cm³-air)/ (mg/cm^3-H_2O)

= Depth to groundwater [cm]

= Enclosed space volume/infiltration area ratio [cm] = Enclosed space foundation or wall thickness [cm]

= Enclosed space air exchange rate [1/s]

= Effective diffusion coefficient between groundwater and

soil surface [cm²/s]

= Effective diffusion coefficient through foundation cracks

 $[cm^2/s]$

= Areal fraction of cracks in foundation and/or walls

[cm²-cracks/cm²-total area] = Conversion factor [L/m³]

 $VF_{wamb} = \frac{H}{I + \left[\frac{U_a \times \delta_a \times L_{GW}}{W \times D^{eff}}\right]} \times 10^3$

where:

= Chemical-specific Henry's Law constant [(mg/cm³-air)/ Н

 (mg/cm^3-H_2O)

= Wind speed at δ_a above ground surface [cm/s]

 δ_a = Breathing zone height [cm] L_{GW} = Depth to groundwater [cm]

= Length of groundwater source area parallel to wind direction

 D_{ws}^{eff} = Effective diffusion coefficient between groundwater and soil

surface [cm²/s]

= Conversion factor $[L/m^3]$

Source: ASTM E1739-95

 VF_{sesp} : Volatilization factor from subsurface soil to indoor (enclosed space) air [(mg/m³-air)/(mg/kg-soil)]

$$VF_{sesp} = \frac{\frac{H \times \rho_{s}}{[\theta_{ws} + (K_{s} \times \rho_{s}) + (H \times \theta_{as})]} \times \left[\frac{D_{s}^{eff} / L_{s}}{ER \times L_{B}}\right]}{1 + \left[\frac{D_{s}^{eff} / L_{s}}{ER \times L_{B}}\right] + \left[\frac{D_{s}^{eff} / L_{s}}{(D_{crack}^{eff} / L_{crack}) \times h}\right]} \times 10^{3}$$

$$\theta_{ws}$$

$$K_{s}$$

where:

Chemical specific Henry's Law constant [(mg/cm³-air)/ (mg/cm³-H₂O)]
 Dry soil bulk density [g-soil/cm³-soil]

= Volumetric water content in vadose zone soils [cm³-H₂O/cm³-soil]

 $= f_{oc} \times K_{oc}$

= Chemical-specific soil-water sorption coefficient for the unsaturated

zone [cm³-H₂O/g-soil]

= Volumetric air content in vadose zone soils [cm³-air/cm³-soil]

= Depth to subsurface soil sources [cm]

= Enclosed space volume/infiltration area ratio [cm] = Enclosed space foundation or wall thickness [cm]

= Enclosed space air exchange rate [1/s]

= Effective diffusion coefficient in soil based on vapor-phase

concentration [cm²/s]

= Effective diffusion coefficient through foundation cracks [cm²/s]

= Areal fraction of cracks in foundation and/or walls

[cm²-cracks/cm²-total area]

= Conversion factor $[(cm^3-kg)/(m^3-g)]$

VF_{ss} : Volatilization factor from surficial soil [(mg/m³-air)/(mg/kg-soil)]

*** choose the smaller of the two ***

$$VF_{ss} = \frac{2 \times W_a \times \rho_s}{U_a \times \delta_a} \times \sqrt{\frac{D_s^{eff} \times H}{\pi \times [\theta_{ws} + (K_s \times \rho_s) + (H \times \theta_{as})] \times \tau}} \times 10^3$$

where:

 W_a = Length of soil source area parallel to wind direction [cm]

 $\rho_s = \text{Dry soil bulk density [g-soil/cm}^3\text{-soil]}$ $U_a = \text{Wind speed at } \delta_a \text{ above ground [cm/s]}$

 δ_a = Breathing zone height [cm]

 D_s^{eff} = Effective diffusion coefficient in soil based on vapor-phase concentration

 $[cm^2/s]$

H = Chemical-specific Henry's Law constant [(mg/cm³-air)/ (mg/cm³-H₂O)]

 θ_{ws} = Volumetric water content in vadose zone soils [cm³-H₂O/cm³- soil]

 $K_s = f_{oc} \times K_{oc}$

= Chemical-specific soil-water sorption coefficient for the unsaturated zone

[cm³-H₂O/g-soil]

 θ_{as} = Volumetric air content in the vadose zone soils [cm³-air/cm³-soil]

 τ = Averaging time for vapor flux [s]

 $= ED(yr) \times 365 (day/yr) \times 86400 (sec/day)$

 10^3 = Conversion factor [(cm³-kg)/(m³-g)]

 $VF_{ss} = \frac{W_a \times \rho_s \times d}{U_a \times \delta_a \times \tau} \times 10^3$

where:

 W_a = Length of soil source area parallel to wind

direction [cm]

 ρ_s = Dry soil bulk density [g-soil/cm³-soil]

d = Depth to base of surficial soil zone [cm]

 U_a = Wind speed at δ_a above ground surface [cm/s]

 δ_a = Breathing zone height [cm]

 τ = Averaging time for vapor flux [s]

 $= ED(yr) \times 365 (day/yr) \times 86400 (sec/day)$

 10^3 = Conversion factor [(cm³-kg)/(m³-g)]

Source: ASTM E1739-95

 VF_p : Delivery of particulate chemicals from soil to air $[(mg/m^3-air)/(mg/kg-soil)]$

$$VF_p = \frac{P_e \times W_a}{U_a \times S_a} \times 10^3$$

where:

 P_e = Particulate emission rate [g-soil/cm²-sec] W_a = Length of soil source area parallel to wind direction [cm]

 U_a = Wind speed at δ_a above ground surface [cm/s]

 δ_a = Breathing zone height [cm] 10^3 = Conversion factor [(cm³-kg)/(m³-g)]

EFFECTIVE DIFFUSION COEFFICIENTS

effective diffusion coefficient in soil based on vapor-phase concentration [cm²/s]

$$D_{s}^{eff} = D^{a} \times \frac{\theta_{as}^{3.33}}{\theta_{T}^{2.0}} + D^{w} \times \frac{1}{H} \times \frac{\theta_{ws}^{3.33}}{\theta_{T}^{2.0}}$$

where:

 D^a = Chemical-specific diffusion coefficient in air [cm²/s] D^{w}

Chemical-specific diffusion coefficient in water [cm²/s] Volumetric air content in vadose zone [cm³-air/cm³-soil] θ_{as}

= Volumetric water content in vadose zone

[cm³-H₂O/cm³-soil]

= Total soil porosity in the impacted zone [cm³/cm³-soil]

= Chemical-specific Henry's Law constant [(mg/cm³-air)/ Н (mg/cm^3-H_2O)

 D_{ws}^{eff} : effective diffusion coefficient between groundwater and surface soil $[cm^2/s]$

$$D_{ws}^{eff} = (h_{cap} + h_v) \times \left[\frac{h_{cap}}{D_{cap}^{eff}} + \frac{h_v}{D_s^{eff}} \right]^{-1}$$

where:

= Thickness of capillary fringe [cm]

= Thickness of vadose zone [cm]

= Effective diffusion coefficient through capillary fringe

 $[cm^2/s]$

 $D_s^{\it eff}$ = Effective diffusion coefficient in soil based on vapor-phase

concentration [cm²/s]

 D_{cap}^{eff} : effective diffusion coefficient for the capillary fringe [cm²/s] $D_{cap}^{eff} = D^{a} \times \frac{\theta_{acap}^{3.33}}{\theta_{r}^{2.0}} + D^{w} \times \frac{1}{H} \times \frac{\theta_{wcap}^{3.33}}{\theta_{r}^{2.0}}$

$$D_{cap}^{eff} = D^{a} \times \frac{\theta_{acap}^{3.33}}{\theta_{T}^{2.0}} + D^{w} \times \frac{1}{H} \times \frac{\theta_{wcap}^{3.33}}{\theta_{T}^{2.0}}$$

where:

 D^{a} = Chemical-specific diffusion coefficient in air [cm²/s]

 D^{w} = Chemical-specific diffusion coefficient in water [cm²/s]

cm³- θ_{acap} = Volumetric air content in capillary fringe soils air/cm³-soil]

> [cm³-= Volumetric water content in capillary fringe soils H₂O/cm³-soil]

= Total soil porosity [cm³/cm³-soil]

= Chemical-specific Henry's Law constant [(mg/cm³-air)/

 (mg/cm^3-H_2O)

 D_{crack}^{eff} : effective diffusion coeff. through foundation cracks [cm²/s]

$$D_{crack}^{eff} = D^{a} \times \frac{\theta_{acrack}^{3.33}}{\theta_{T}^{2.0}} + D^{w} \times \frac{I}{H} \times \frac{\theta_{wcrack}^{3.33}}{\theta_{T}^{2.0}}$$

where:

= Chemical-specific diffusion coefficient in air [cm²/s]

= Chemical-specific diffusion coefficient in water [cm²/s]

= Volumetric air content in foundation/wall cracks $heta_{acrack}$

[cm³-air/cm³-total volume]

= Volumetric water content in foundation/wall cracks

[cm³-H₂O/cm³-total volume]

= Total soil porosity [cm³/cm³-soil]

= Chemical-specific Henry's Law constant [(mg/cm³-air)/

 (mg/cm^3-H_2O)

DOMENICO MODEL: DILUTION ATTENUATION FACTOR (DAF) IN THE SATURATED ZONE

Domenico model for multi-dimensional transport with decay and continuous source:

$$\frac{C(x,y,z,t)}{C_o} = (1/8) exp \left[\frac{x}{2 \times \alpha_x} \left[1 - \sqrt{1 + \frac{4 \times \lambda \times \alpha_x}{v}} \right] \right] \times erfc \left[\frac{\left[(x - v \times t) \sqrt{1 + \frac{4 \times \lambda \times \alpha_x}{v}}}{2 \sqrt{\alpha_x \times v \times t}} \right] \right] \times erfc \left[\frac{C(x)}{C_o} = exp \left[\frac{x}{2 \times \alpha_x} \left[1 - \sqrt{1 + \frac{4 \times \lambda \times \alpha_x}{v}} \right] \right] \times erf \left[\frac{C(x)}{2 \times \alpha_x} \right] \times \left[erf \left[\frac{(y - y/2)}{2 \times \sqrt{\alpha_y \times x}} \right] - erf \left[\frac{(z - \delta_{gw})}{2 \times \sqrt{\alpha_z \times x}} \right] \right] \right] \times erf \left[\frac{C(x)}{2 \times \sqrt{\alpha_z \times x}} \right] \times \left[erf \left[\frac{(z - \delta_{gw})}{2 \times \sqrt{\alpha_z \times x}} \right] - erf \left[\frac{(z - \delta_{gw})}{2 \times \sqrt{\alpha_z \times x}} \right] \right]$$

where:

C= dissolved-phase concentration [mg/L]

= dissolved-phase concentration at the source (at x=y, $0 \le z \le \delta_{gw}$) [mg/L]

= seepage velocity [cm/year]

= first order decay rate [1/year]

= longitudinal dispersivity [cm]

= lateral dispersivity [cm]

= vertical dispersivity [cm]

= spatial coordinates [cm] x, y, z

= time [year]

= distance along the centerline from the downgradient edge of dissolved-plume \boldsymbol{x}

source zone or source well [cm]

= width of soil source perpendicular to the groundwater flow direction [cm] Y

groundwater mixing zone thickness [cm]

DAF $= C_0/C(x)$

Source: Domenico, P.A. and F.W. Schwartz, 1990, Physical and Chemical Hydrogeology. John Wiley and Sons, NY, 824 p. (Eqn. 17.21)

At the centerline, for steady-state (after a long time) the concentration can be obtained by setting y = 0, z = 0, and $x << v \times t$ as:

$$\frac{C(x)}{C_o} = exp \left[\frac{x}{2 \times \alpha_x} \left[1 - \sqrt{1 + \frac{4 \times \lambda \times \alpha_x}{v}} \right] \right] \times erf \left[\frac{Y}{4 \times \sqrt{\alpha_y \times x}} \right] \times erf \left[\frac{\delta_{gw}}{2 \times \sqrt{\alpha_z \times x}} \right]$$
(1)

At the centerline, for steady-state, the DAF without decay can be obtained by setting y = 0, z = 0, x << vt, and $\lambda = 0$ as:

$$\frac{C(x)}{C_o} = erf\left[\frac{Y}{4 \times \sqrt{\alpha_y \times x}}\right] \times erf\left[\frac{\delta_{gw}}{2 \times \sqrt{\alpha_z \times x}}\right]$$
 (2)

Note: Comparing to ASTM E1739-95, p. 31, where $Y = S_w$ $\delta_{ow} = S_d$, v = u, and $C_o = C_{source}$

At the centerline, for steady-state, the DAF with decay can be calculated using Equation (2). In Equation (2), the retarded seepage velocity (v) is calculated as:

$$v = (K \times i)/(R_s \times \theta_{TS})$$

where.

= Hydraulic conductivity [cm/year]

= Hydraulic gradient [--]

= Total porosity in the saturated zone

[cm³/cm³-soil]

= Retardation factor in the saturated zone [--]

<i>LF_{SW}</i> : Leaching Factor from subsurface soil to groundwater [(mg/L-H ₂ O)/(mg/kg-soil)]	C_s^{SAT} : Soil concentration at which dissolved pore water and vapor phases become saturated [(mg/kg-soil)]
$LF_{SW} = \frac{\rho_s}{[\theta_{ws} + K_s \times \rho_s + H \times \theta_{as}] \times \left(1 + \frac{U_{gw} \times \delta_{gw}}{I \times W}\right)}$	$C_s^{sat} = \frac{S}{\rho_s} \times [H \times \theta_{as} + \theta_{ws} + K_s \times \rho_s]$
where:	where:
	S = Pure component solubility in water [mg/L-H ₂ O] ρ_s = Dry soil bulk density [g-soil/cm ³ -soil] H = Chemical-specific Henry's Law constant [(mg/cm ³ -air)/ (mg/cm ³ -H ₂ O)] θ_{as} = Volumetric air content in the vadose zone soils [cm ³ -air/cm ³ -soil] θ_{ws} = Volumetric water content in vadose zone soils [cm ³ -H ₂ O/cm ³ - soil] K_s = $f_{oc} \times K_{oc}$ = Chemical-specific soil-water sorption coefficient for the unsaturated zone [cm ³ -H ₂ O/g-soil]
Source: ASTM E1739-95	Source: ASTM E1739-95

DCRBCA Final Fiscal Year 2002

ALLOWABLE SOIL AND GROUNDWATER CONCENTRATION FOR GROUNDWATER RESOURCE PROTECTION

Allowable soil concentration at the source[mg/kg] = Target groundwater concentration at the $POE \times \frac{DAF_{POE}}{LF_{SW}}$

Allowable groundwater concentration at the source $[mg/L] = Target groundwater concentration at the POE <math>\times DAF_{POE}$

Allowable groundwater concentration at the POC[mg/L] = Target groundwater concentration at the POE $\times \frac{DAF_{POE}}{DAF_{POC}}$

where:

POE = Point of exposure POC = Point of compliance

 DAF_{POE} = Dilution Attenuation Factor between the point of exposure and the source DAF_{POC} = Dilution Attenuation Factor between the point of compliance and the source

 LF_{sw} = Dry soil leaching factor [(mg/L-H₂O)/(mg/kg-soil]

Concentration at POE is expressed in mg/L-H₂O

Additional relationships used in the calculation of allowable soil and groundwater concentration with chemical degradation:

First order decay rate $[1/\text{day}] = \frac{0.693}{Half Life}$

Retardation Factor for Organics in the saturated zone $(R_s) = 1 + \left(\frac{\rho_{ss} \times K_{ss}}{\theta_{TS}}\right)$ $K_{ss} = foc_s \times K_{oc}$

where:

 ρ_{ss} = Saturated zone soil bulk density [g-soil/cm³-soil]

 K_{ss} = Chemical-specific soil-water sorption coefficient in the saturated zone [cm³-H₂O/g-soil]

 K_{oc} = Chemical-specific soil-water distribution coefficient for metals in the saturated zone [cm³/g-C]

 θ_{rs} = Total porosity in the saturated zone [cm³/cm³-soil]

 foc_s = Fractional organic carbon content in the saturated zone [g-C/g-soil]

STREAM PROTECTION: ALLOWABLE GROUNDWATER CONCENTRATION AT THE POINT OF DISCHARGE

Where:

$$C_{gw} = \frac{C_{sw} \left(Q_{gw} + Q_{sw} \right)}{Q_{gw}} - C_{su} \left(\frac{Q_{sw}}{Q_{gw}} \right)$$

 Q_{gw} = Impacted groundwater discharge into the stream [ft³/day]

 C_{gw} = Allowable concentration in groundwater at the point of discharge into the stream [mg/L]

 Q_{sw} = Stream flow upstream of the point of groundwater discharge (stream flow rate) [ft³/day]

 C_{sw} = Allowable concentration at the downstream edge of the stream's mixing zone [mg/L]

 C_{su} = The COCs' concentration upstream of the groundwater plume discharge [mg/L]

STREAM PROTECTION: ALLOWABLE SOIL AND GROUNDWATER CONCENTRATION AT THE SOURCE & POC

Allowable soil concentration at the source[mg/kg] = Target surface water concentration[mg/L] at the $POE \times \frac{DAF_{POE}}{LF_{SW}}$

Allowable groundwater concentration at the source [mg/L] = $Target\ surface\ water\ concentration [mg/L]\ at\ the\ POE \times DAF_{POE}$

Allowable groundwater concentration at the POC[mg/L] = Target surface water concentration[mg/L] at the POE $\times \frac{DAF_{POE}}{DAF_{POC}}$

Additional relationships used in the calculation of allowable soil and groundwater concentration with chemical degradation:

First order decay rate $[1/\text{day}] = \frac{0.693}{\text{Half Life}}$

Retardation Factor for Organics in the saturated zone $(R_s) = 1 + \left(\frac{\rho_{ss} \times K_{ss}}{\theta_{TS}}\right)$ $K_{ss} = foc_s \times K_{oc}$

where:

 ρ_{ss} = Saturated zone soil bulk density [g-soil/cm³-soil]

 K_{ss} = Chemical-specific soil-water sorption coefficient in the saturated zone [cm³-H₂O/g-soil]

 K_{oc} = Chemical-specific soil-water distribution coefficient for metals in the saturated zone [cm³/g-C]

 θ_{rs} = Total porosity in the saturated zone [cm³/cm³-soil]

 foc_s = Fractional organic carbon content in the saturated zone [g-C/g-soil]

SCHEMATIC DESCRIPTION OF DOMENICO'S MODEL

SECTION

PLAN

 $\frac{\textbf{Note:}}{(* \text{ Assumes only vertical leaching, i.e., there is no horizontal spreading in the unsaturated zone.)}$